Content with notebooks¶
You can also create content with Jupyter Notebooks. The content for the current page is contained
in a Jupyter Notebook in the notebooks/
folder of the repository. This means that we can include
code blocks and their outputs, and export them to Jekyll markdown.
You can find the original notebook for this page at this address
Markdown + notebooks¶
As it is markdown, you can embed images, HTML, etc into your posts!
You an also \(add_{math}\) and
or
But make sure you $Escape $your $dollar signs $you want to keep!
Code blocks and image outputs¶
Jupyter Book will also embed your code blocks and output in your book. For example, here’s some sample Matplotlib code:
from matplotlib import rcParams, cycler
import matplotlib.pyplot as plt
import numpy as np
# Fixing random state for reproducibility
np.random.seed(19680801)
N = 10
data = [np.logspace(0, 1, 100) + np.random.randn(100) + ii for ii in range(N)]
data = np.array(data).T
cmap = plt.cm.coolwarm
rcParams['axes.prop_cycle'] = cycler(color=cmap(np.linspace(0, 1, N)))
from matplotlib.lines import Line2D
custom_lines = [Line2D([0], [0], color=cmap(0.), lw=4),
Line2D([0], [0], color=cmap(.5), lw=4),
Line2D([0], [0], color=cmap(1.), lw=4)]
fig, ax = plt.subplots(figsize=(10, 5))
lines = ax.plot(data)
ax.legend(custom_lines, ['Cold', 'Medium', 'Hot']);

Note that the image above is captured and displayed by Jekyll.

print("this works for code cells too, if you add a `margin` tag to them")
this works for code cells too, if you add a `margin` tag to them
# You can also include enriched outputs like Math
from IPython.display import Math
Math("\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}")
Removing content before publishing¶
You can also remove some content before publishing your book to the web. For example, in the original notebook there used to be a cell below…
You can also remove only the code so that images and other output still show up.
Below we’ll only display an image. It was generated with Python code in a cell, which you can see in the original notebook
thisvariable = "this plot *will* show up in the textbook."
fig, ax = plt.subplots()
x = np.random.randn(100)
y = np.random.randn(100)
ax.scatter(x, y, s=np.abs(x*100), c=x, cmap=plt.cm.coolwarm)
ax.text(0, .5, thisvariable, fontsize=20, transform=ax.transAxes)
ax.set_axis_off()

And here we’ll only display a Pandas DataFrame. Again, this was generated with Python code from this original notebook.
import pandas as pd
df = pd.DataFrame([['hi', 'there'], ['this', 'is'], ['a', 'DataFrame']], columns=['Word A', 'Word B'])
df
Word A | Word B | |
---|---|---|
0 | hi | there |
1 | this | is |
2 | a | DataFrame |
You can even style Pandas DataFrames! See the Pandas Styling docs for more information.
import pandas as pd
np.random.seed(24)
df = pd.DataFrame({'A': np.linspace(1, 10, 10)})
df = pd.concat([df, pd.DataFrame(np.random.randn(10, 4), columns=list('BCDE'))],
axis=1)
df.iloc[3, 3] = np.nan
df.iloc[0, 2] = np.nan
def color_negative_red(val):
"""
Takes a scalar and returns a string with
the css property `'color: red'` for negative
strings, black otherwise.
"""
color = 'red' if val < 0 else 'black'
return 'color: %s' % color
def highlight_max(s):
'''
highlight the maximum in a Series yellow.
'''
is_max = s == s.max()
return ['background-color: yellow' if v else '' for v in is_max]
df.style.\
applymap(color_negative_red).\
apply(highlight_max).\
set_table_attributes('style="font-size: 10px"')
A | B | C | D | E | |
---|---|---|---|---|---|
0 | 1.000000 | 1.329212 | nan | -0.316280 | -0.990810 |
1 | 2.000000 | -1.070816 | -1.438713 | 0.564417 | 0.295722 |
2 | 3.000000 | -1.626404 | 0.219565 | 0.678805 | 1.889273 |
3 | 4.000000 | 0.961538 | 0.104011 | nan | 0.850229 |
4 | 5.000000 | 1.453425 | 1.057737 | 0.165562 | 0.515018 |
5 | 6.000000 | -1.336936 | 0.562861 | 1.392855 | -0.063328 |
6 | 7.000000 | 0.121668 | 1.207603 | -0.002040 | 1.627796 |
7 | 8.000000 | 0.354493 | 1.037528 | -0.385684 | 0.519818 |
8 | 9.000000 | 1.686583 | -1.325963 | 1.428984 | -2.089354 |
9 | 10.000000 | -0.129820 | 0.631523 | -0.586538 | 0.290720 |
Testing popouts before headers
Interactive outputs¶
We can even do the same for interactive material. Below we’ll display a map using folium. When the notebook is converted to Markdown, the code for creating the interactive map is retained.
Note that this will only work for some packages. They need to be able to output standalone HTML/Javascript, and not depend on an underlying Python kernel to work.
import folium
m = folium.Map(
location=[45.372, -121.6972],
zoom_start=12,
tiles='Stamen Terrain'
)
folium.Marker(
location=[45.3288, -121.6625],
popup='Mt. Hood Meadows',
icon=folium.Icon(icon='cloud')
).add_to(m)
folium.Marker(
location=[45.3311, -121.7113],
popup='Timberline Lodge',
icon=folium.Icon(color='green')
).add_to(m)
folium.Marker(
location=[45.3300, -121.6823],
popup='Some Other Location',
icon=folium.Icon(color='red', icon='info-sign')
).add_to(m)
m
Rich outputs from notebook cells¶
Because notebooks have rich text outputs, you can store these in your Jupyter Book as well!
# The ! causes this to run as a shell command
!jupyter -h
usage: jupyter [-h] [--version] [--config-dir] [--data-dir] [--runtime-dir]
[--paths] [--json] [--debug]
[subcommand]
Jupyter: Interactive Computing
positional arguments:
subcommand the subcommand to launch
optional arguments:
-h, --help show this help message and exit
--version show the jupyter command's version and exit
--config-dir show Jupyter config dir
--data-dir show Jupyter data dir
--runtime-dir show Jupyter runtime dir
--paths show all Jupyter paths. Add --json for machine-readable
format.
--json output paths as machine-readable json
--debug output debug information about paths
Available subcommands: bundlerextension kernel kernelspec migrate nbconvert
nbextension notebook run serverextension troubleshoot trust